SEQUENCES

A sequence is a function whose domain is either all the integers between two given integers or all the integers greater than or equal to a given integer.

Sequences can be defined:

- by listing the first few elements
e.g. $3,5,7, \ldots$.
- Analytically: by giving an explicit formula for its nth term
e.g. $\forall \mathrm{n} \in \mathbb{N}, a_{n}=\frac{(-1)^{n}}{n+1}$
- Recursively: using recursion

$$
\begin{array}{lll}
\text { e.g. } & \mathrm{b}_{0}=1, \mathrm{~b}_{1}=2 & \text { (initial conditions) } \\
& \mathrm{b}_{\mathrm{k}}=\mathrm{b}_{\mathrm{k}-1}+\mathrm{b}_{\mathrm{k}-2} & \text { (recurrence relation) }
\end{array}
$$

RECURSIVELY DEFINED SEQUENCES

A recurrence relation for a sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a formula that relates each term a_{k} to certain of its predecessors $\mathrm{a}_{\mathrm{k}-1}, \mathrm{a}_{\mathrm{k}-2}, \ldots, \mathrm{a}_{\mathrm{k}-\mathrm{i}}$, where i is a fixed integer and k is any integer greater than or equal to i .
The initial conditions for such a recurrence relation specify the values a_{0}, \ldots, $\mathrm{a}_{\mathrm{i}-1}$.

SOLVING RECURRENCE RELATIONS BY ITERATION

- Look at $\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{a}_{2}, \ldots$ until you see a pattern. It is useful to not calculate the final value for each, but to keep the formula for each instead.
- Guess a formula for a_{n}
- Prove by induction that the formula is equivalent to the recursive definition

SUMMATION AND PRODUCT NOTATIONS

If m and n are integers and $\mathrm{m} \leq \mathrm{n}$
The symbol

$$
\sum_{k=m}^{n} a_{k}=a_{m}+a_{m+1}+\cdots+a_{n}
$$

The symbol (LHS) reads as "the sum from k equals m to n of a sub k "
The symbol $\quad \prod_{k=m}^{n} a_{k}=a_{m} \times a_{m+1} \times \ldots \times a_{n}$
The symbol (LHS) reads as "the product from k equals m to n of a sub k "
The RHS is called the expanded form of the sum (or product).
k is called the index of the sum (or product)
m is the lower bound and n is the upper bound.

BASIC SEQUENCES AND THEIR SOLUTIONS

In all the following sequences you can assume that \exists a such that $\mathrm{a}_{0}=\mathrm{a}$
Arithmetic sequences
A sequence a_{0}, a_{1}, \ldots is called an arithmetic sequence iff there is a constant c s.t. $\quad a_{k}=a_{k-1}+c \quad$ for all integers $k \geq 1$
This is equivalent to $\quad a_{n}=a+c . n \quad$ for all integers $n \geq 0$

Geometric Sequences

A sequence a_{0}, a_{1}, \ldots is called a geometric sequence iff there is a constant b s.t. $a_{k}=b \cdot a_{k-1} \quad$ for all integers $k \geq 1$
This is equivalent to $\quad a_{n}=a \cdot b^{n} \quad$ for all integers $n \geq 0$

Sum of a Geometric Sequence

A sequence a_{0}, a_{1}, \ldots is called a sum of a geometric sequence iff
there are constants b , c s.t. $\quad \mathrm{a}_{\mathrm{k}}=\mathrm{b} . \mathrm{a}_{\mathrm{k}-1}+\mathrm{c} \quad$ for all integers $\mathrm{k} \geq 1$
This is equivalent to $a_{n}=b^{n} a+c \sum_{i=0}^{n-1} b^{i} \quad$ for all integers $\mathrm{n} \geq 0$
If $\mathrm{a}=\mathrm{c}$ then $a_{n}=a \sum_{i=0}^{n} b^{i}$

